1		RE /	SEMVI s: stion No 1 is Co wer any 3 ques	E	XTC	1	CB	Sas) -	Tr	naa	0 8	2/	idaa	n		21
	Instr	uction	s:	ma	- Comment	7					J		V	areo	10	BOCK	2881 nc
	(1) Que	stion No 1 is Co	mpul	sorv	54			2.0			OP	Cor	10 - 51	R75		(
	(2) Ansı	ver any 3 ques	tions f	rom th	ie rem	ainin	o mies	tions					46 . 00	013	11/01	7-15
			, , ,				*****	5 ques	·		-			3		100	0 0
														100			
			į.									2.0	90				10
	· Q1	Ans	wer any 4										-		5	20	
							23	555		-				•		20	7
		a.	Explain RGB	and HS	SI colo	ur mo	dels.								No.	76	
		b.	Quality of pic	ture d	epend	s on t	he nu	mber o	of pix	els ar	nd grey	v leve	l that	represer	at the	Part .	
*			picture. Justify	or con	ntradic	t.											
		C.,	What are the d	lifferen	it types	s of or	der sta	atistics	filters	? Dis	cuss th	neir ad	Ivantag	zes.	1/2		
		d.	Discuss the cla	assifica	ations	of vide	o frar	nes.				6		,	5		
		e.	Explain openin	ng and	closin	gofa	digita	l image	ð.					16			
		181											1	1,5			
	Q2	a.	Write an exp	ression	for a	two	dime	isional	DCI	. Als	o, fin	d the	DCT	of the	given		
			image.										1)		10	
			ž.	1. 2 2 1 1 2 2 1	2 1	1							Lucy				
				2 1	2 1	1							1		(2)		
			*	1 2	2 1						96	· P	7				
				2 1	2 1							050		sa	(a)		
		b	Why Fourier	-			e fra	manan	dom	ain t	acila Ch	0		.1 for :		10	
		Ο,	enhancement?	With	the he	In of	neat h	look di	across	aun	loin th	a basi	usen	il for i	mage	10	
			frequency don									C Dasi	C 01 11	itering i	n me	e :	
			requestoy don		TVC the	··	113 01	SILLITINE	s uic c	nigit.	3						
	Q3	a.	Perform histo	gram 1	Equalia	zation	for t	he foll	owing	ima	ge Pl	ot the	origi	nal and	t the	10	
			Equalized Hist	ogram	S		101	1011	2 11 11	2	BO. 11	or Line	Origi	nai and	ı uıc	10	
1.0	100								1				-			¥	
			Intensity	0	1	2	3	4 6	5	6	7	7			10		
		2.50		70	100	40	60	10	70	10	40	1					18
			pixels				100000	0				1				,	
		20		-			12	-				٠.		×			
		b.	Discuss region	based	segme	entatio	n.C									10	
*					-	A	(C)	100	*								
	Q4	a.	What are the r	equire	d samp	ling r	ates fo	or video	o sign	als?	Explain	n vide	o sam	pling in	three	10	
			dimensions.			4					- ,						
		b.	Explain HIT of	MISS	trans	form u	sing a	n exam	iple.							10	
					The same				•						1		
	Q5	a.	Explain the wo	rking	of Wei	ner fil	ter in	image	restor	ation.			*0			10	
		b.	Discuss the con									92 2 To	*0			10	
				Y.			,	•			* "	*					
411	Q6	Write	short notes on		vo ·												
		a.	KL Transform					*				-			7	20	
4	¥	b.	Exhaustive blo	ck mat	ching	algorit	thms.						1				
*		c.	Hough transfor			2			20								
		d.	Point Processir	ng.	*				**			κ.	¥.	ë			
			C. P.		50				2			2					
*			The state of													0.00	
	*	· Q	<i>y</i>														
		0											×			200	
		lumg												Ψ.			

QP Code: 5916

Number Of Channels	Total Traffic Intensity (Erlangs)
57	45
19	12
100	88

10

b] Explain W-CDMA Forwar	d channel structure in detail.
--------------------------	--------------------------------

4

Q4.

a) Compare IS-95, WCDMA and CDMA2000 with respect to Channel bandwidth, chip rate, modulation schemes, data rates and frame size.

b) Draw LTE network architecture and discuss it in detail 10

Q5
a) What is the concept of software defined radio? Elaborate in detail. 10

b) Explain Hand off in UMTS.

Q6. Write a short note on any two of the following:

20

1. Multiantenna Techniques

2. Cellular capacity and coverage improvement Techniques

3. Indoor propagation Models

3.

5.

MD-Con. 8767 -15.

BE- Sem-VII - Cobsas) - Extc - Optical communication and Networks - Nov-15

QP Code: 5954

[Total Marks: 80

(3 Hours)

					North To
	N.	В.:	(1) (2)	Question No. 1 is compulsory Attempt any three questions out of the remaining five questions. Figures to the right indicate full marks.	2
			(3)	Figures to the right indicate full marks.	
			D. CC	1.0	5
	1.			rentiate DWDM, WDM and SONET. is optical safety?	5
		•		rentiate LED and LASER sources.	5
)				pare different types of splicing techniques.	5
	2.	(a)		the block diagram of optical communication and state its advantages and vantages.	10
		(b)	Expla	in different types of fibers with their refractive index profile and mention its	5
		(c)		ltimode GIF exhibits total pulse broadening of ms over a distance of 15 km.	5
				nate (i) The maximum possible Bandwidth on the link assuming no S	
				(ii) The pulse dispersion per unit length. (iii) The Bandwidth length product.	
	3.	(a)	What	is macrobending loss. Explain with neat diagram. Explain how to minimize	10
			micro	bending losses.	5
				ain OTDR with neats sketch and mention its advantages and applications.	61-
	ON	(c)	Deriv	ve an Expression for responsivity of PIN photodiode.	5
			****	in land if Francis different times of front end simplifiers	7
	4.	(a)	What	are optical amplifiers. Explain different types of front end amplifiers. ain in detail working principle of RAPD. Why it is called reach through APD.	0
		(0)		ompare its working with PIN diode.	8
		(c)		ain SONET architecture in detail.	5
	5.	(a)		ain working principle of isolator with neat sketch. Also compare isolator and	10
		(b)		e a short note on link power budget.	10
			2	Omparis devil	10
	6.			an OTDM in detail.	10
		(0)	EXPI	ain optical access networks.	10
		2	from.		

B'E-Sem-VII-COBSas). EXTC-Microwave & Radar Enggineer NOV-15

Q.P. Code: 6015

			(3 Hours)	[Total Marks: 80
N	В.:	 Question No.1 is comp Solve any three questi Assume suitable data 	ons from the remaining.	130 to 5
1.	(a) (b) (c) (d)			n s-matrix 5
2.	(a)	Z ₀ of the line and stub is 50	$Z_{\rm L}$ is $100+\rm{j}100\Omega$ and the chara Ω . The first stub is placed at Ω the two stubs is $3\lambda/8$. Determine the match is achieved.	0.40 λ away from the
	(b)	Explain instrument landing	system for aircraft navigation.	10
3.	(a)	Derive the wave equation in a circular waveguide.	for a TE wave and obtain all t	he field components 10
	(b)	The state of the s	peam coupling coefficient? D	erive the equation of 10
4.	(a) (b)	With a suitable diagram, ex	RWH model and two valley many the working on conical that need to be considered	scan tracking radar. 10
5.	(a)	Draw and explain with bl	ock diagram of MTI radar s	ystem. What are its 10
	(b)		ncy, current frequency and poor a microwave transistor.	ower gain frequency 10
6.	(a) (b) (c)	transform $Z_L = 200 - j1000$ Write a short note one back Aradar operating at 1.5 GI	Hz uses a peak pulse power of swhose radar cross section is	e. Use Smith Chart. 5 f 2.5 MW and have a 1m². If the minimum
1	PILE	The state of the s	eiver is 2x10 ⁻¹³ Watt. What is to uld have, assuming it to be a	

E/EXTC/Sem. VII (CBSGS)/Date Compression and Encryption NOV-15

Q.P. Code: 6193

								(3 Ho	urs)			[Tota		arks:	
N.B.	:	(2)	Sol	ve an	y thre	e ques		from r	emainii ecessar				tion	10156	5
111 31 100	(a) (b)	A p	sou (a ₂)	rce en = 0.1:	nits lat	ters A ters A	{ a ₁ , a ₂ , a ₃	$(a_2, a_3, a_4) = 0.$	nd stega a ₄ } with 10 calc	n probal	oilities p	p (a,) =	0.5 e sou	irce.	20
	(c)	D	efine	the ch x = x = x =	inese re 2 mod 3 mod 2 mod	emaind 3 5 7	er theor	em fin	d the solu	ution to the		taneous	equat	ions.	
,	(-)		. **	(i)	3 ¹² moo	d 11			,0,0G						
	(a) (b)	G	w a Sive	b b a	bra acks	rbar of Lz-7	rac1	b a e	8 assum	ne wind	ow size				20
	(a) (b)	E	Expla	in dif	fie hell	man k	law ar ey excl	nange	aw com algorith	panding m with a	g an exam	ple. Als	so ex	plain	20
	(a) (b)	t	riple	DES	with 1	doub wo ke	eys.	S with	exampl	e write	with ne	at black	c dia	gram	20
5.	(a)								and dec		, ,				20
6.	P		(a) (b) (c)	Ethio Atta	cal hac cks on G - 20	RSA 00		<		۳.		9			20
1			(d)	Bion	netric	Auther	nticatio	on.			41				

MD-Con 11740-15

BE/EXTC/Sem-VII(CBSGS)/Newal Network & Fuzzy logic Nov-15 QP Code: 6199 (3 Hours) [Total Marks: 80] Instructions to the candidates, if any

- 2) Solve any three questions out of remaining five questions.
- 3) Draw neat labeled diagram wherever necessary.
- 4) Answers to each new question to be started on a fresh page

Q1: Solve any four:

(5x4=20)

- a) Draw and explain neural networks based OR function.
- b) Draw and explain McCulloch Pitts neuron architecture.
- c) What do you mean iterations and epochs with reference to training of neural network
- d) For the two fuzzy sets:

Consider two fuzzy sets given by:

$$\stackrel{A}{\sim} = \left\{ \frac{1}{2} + \frac{0.2}{3} + \frac{0.5}{4} \right\}$$

$$\stackrel{B}{\sim} = \left\{ \frac{0.9}{2} + \frac{0.4}{3} + \frac{0.8}{4} \right\}$$

Find i) AUB ii) A \cap B iii) \(\overline{A} \) iv) \(\overline{A} \) UB of the fuzzy sets

- e) Explain with block diagram the unsupervised neural networks with an example
- Q.2 A) Describe delta learning rule with flow chart.

(10)

Q.2 B) Draw Ropfield Neural Network with four output nodes. Also explain training and testing algorithm of Hopfield neural network.

TURN OVER

Q.3A)i) A Hopfield network made up of five neurons, which is required to store the following patterns:

 $P1 = [1 \ 1 \ 1 \ 1]^T$

 $P2 = [1 -1 -1 1 -1]^T$

 $P3 = [-1 \ 1 \ -1 \ 1 \ 1]^T$

Evaluate the 5-by 5 weight matrix of the Hopfield Network (6)

ii) Explain any four properties of fuzzy sets (4)

O.3B)Explain the following: (10)

i) Radial Basis Function Neural Network structure for Classification

ii) Fuzzy Inference System with block diagram

Q.4A) Explain perceptron learning algorithm and develop perceptron network to implement two inputs OR gate to function. Consider inputs and output as bipolar. Assume initial weight and bias values equal to zero. Consider learning rate equal to one. (10)

Q.4B) Explain any four methods for defuzzification in details. (10)

Q.5. A) Describe the application of Neural Network for face recognition. (10)

Q.5. B) Explain how Fuzzy logic can be used in image smoothing. (10)

Q.6. A) What do you mean by membership function? Explain with diagram. Describe any three fuzzy membership functions with diagram and mathematical equations. (10)

Q.6. B) Describe the following with suitable diagram: (10)

i) Hand written character recognition using Neural Networks.

ii) Application of Puzzy logic for image contrast enhancement.

MD-Con. 11742-15.